Helium-rich stars in globular clusters Constraints for self-enrichment by massive stars

T. Decressin

Argelander-Institut für Astronomie Bonn University

November 8-13, 2009 — Geneva

Abundance anomalies in GCs

In any individual Globular Clusters

- Low scatter and same trends as field stars (heavy elements)
- $\implies {\sf Heavy\ metals\ come\ from\ pre-enrichment\ of\ the\ galactic\ halo} \\ (i.e.,\ are\ not\ produced\ in\ situ)\ {\sf Harris\ \&\ Pudritz\ (1994)}$
 - Complex patterns and strong differences with field stars
 - C-N, O-Na, Mg-Al and Li-Na anticorrelations
 - C+N+O nearly constant
 - both in unevolved and giants starsGratton et al (2004)
- \Longrightarrow Abundance anomalies come from self-enrichment of GC
 - multiple main sequence (ω Cen, NGC 2808) and extended HB (Bedin et al 2004, Piotto et al 2008, D'Antona & Caloi 2004...)
 - Due to increase in He
- \implies abundance anomalies and He enrichment:

due to H-burning nucleosynthesis at high temperature

Overview: fast rotating massive stars evolution

Overview: fast rotating massive stars evolution

Decressin et al. 2007

Overview: fast rotating massive stars evolution

Decressin et al. 2007

GC evolution

He content of long-lived stars

Assumption: local dilution between slow winds and ISM

Reproduce range of [O/Na] distribution in NGC 6752

Decressin et al. (2007)

Consequences for He:

tail extends to 0.75

Grid of models for low-mass stars

- Mass: 0.2—0.9 *M*_☉
- Initial He: 0.245—0.72 (mass fraction)
- Z=0.0005 ([Fe/H] \sim -1.6, similar to NGC 6752)
- Standard models (no extra mixing)
- From PMS to end of He-burning

Calibration for mass loss on RGB

Villanova, Piotto & Gratton, 2009

 \Rightarrow T_{eff} \leq 10000 K: He-normal

Mass loss on RGB

 $M_{
m ini}=0.86~M_{\odot}$, $t_{
m TO}=13~{
m Gyr}$

Calibration for mass-loss:

• $T_{\rm eff} \leq$ 10000 K: He-normal stars on HB

 \Rightarrow Reimers mass loss rate with $\eta_R=0.4$

• He-rich stars on hotter HB

Lifetime of He-rich stars

Decressin Meynet & Charbonnel (in preparation)

- \implies He-rich stars evolve faster
- \implies Spread in He \Leftrightarrow Spread in mass at TO

He-rich stars in CMD

He-spread: 0.25-0.72 t: 13 Gyr

TO: Higher *T*_{eff} Small decreases of L

RGB: Smaller spread in T_{eff}

HB: Extended HB No super-He-rich stars

He-WD in NGC 6397

Strickler et al. 2009

NGC 6397

- weak abundance anomalies
- no split of MS or RGB

About 24 He-WD detected Members of binary systems

He-WD in ω Cen

ω Cen

- Blue MS with Y ~ 0.42 Piotto et al., 2005
- Display abundance anomalies

6500 WD detected Some can be He-WD

Comparison with NGC 6752

from Brown et al. (2005) In NGC 6752: too broad MS and RGB and agreement with HB

 \implies assumption on local dilution to be changed

GC evolution

Models of Baumgardt & Kroupa (2007)

- 20000 stars (1 M_{\odot})
- gas treated with additional potential
- time dependent

Physical input parameters

- SFE (ϵ) \Longrightarrow amount of gas left
- $r_h/r_t \Longrightarrow$ concentrated cluster and strength of tidal field
- $\tau_{\rm gas}/t_{\rm cr} \Longrightarrow$ speed of gas expulsion vs internal dynamics

Case: $\epsilon = 0.3$, $r_h/r_t = 0.06$, $\tau_{GE}/t_{cr} = 0.33$

Chemical consequences of early pollution by massive stars in GCs

- 2nd gene of low-mass stars: enriched in H-burning material
- increase of He content
 - \Rightarrow no super-He rich detected in GC
 - Dilution of slow winds on larger scales

Dynamical consequences

- proto-GCs need to be up to 20 times more massive at birth
- primordial gas expulsion in early times seems to be the main responsible to lose 1st generation stars